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ABSTRACT

A radiometric method for the measurement of gas temperature In
gelf-absorbing gases has been applied in the study of shock-tube
generated flows. This method involves meking two sbsolute intensity
meagurements at identical wavelengths, but for two different path-
lengthe in the same gas sample. Experimental results are presented
for reflected shock weves in air at conditions corresponding to incident
shock velocities from 7 to 10 km/s and an initial driven tube pressure
of 1 torr. These results indicate that, with this technique, tempera-
ture measurements with an accuracy of +5 percent can be carried out.

The results also suggest certain facility related problems.
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I. INTRODUCTION

During the past ten years, shock tubes have been used extensively
in the experimental study of radiative transfer in shock-heated gases
as well a8 in the study of other aspects of high temperature shock
layer phenomena. The chief adventage in using a shock tube for such
gstudies is the ability to produce high tempersture gases at known
conditions, i.e., at conditions which cen be readily calculated for
equilibrium states using the appropriate normal shock equations.
Because of the relative ease with which such calculations are carried
out, shock-tube studies in most cases have been limited to heat trans-
fer measurements and to photometric measurements of either spectral or
total radistive intensities, in addition to the normal measurements of
incident shock-wave velocity and initial driven-tube pressure. The
latter are of course necessary to calculate the equilibrium state of
the shock-heeted gas.

Temperature measurements have only been carried out in a very
limited number of studies and their general importance has been some-
what minimized. This is understandable for many conditions of interest
in ghock-tube research and since such measurements are not easy. How-
ever, at low densities where nonequilibrium conditions may prevail and
st high temperatures where radiative cooling may be important, the
measurement of temperature becomes extremely important. Furthermore,
recent measurements by Wilson and Woodl»Z at the Lockheed Palo Alto
Research Laboratory and by Bengston et al. at the University of Maryland,>
call into question our ability to even calculate equilibrium conditions
in shock-heated geses. The measurements of both of these investigations
were carried out behind reflected shock waves and show discrepancies of
approximately five percent between the data and equilibrium state calcu-
lations, It is this importance of temperature measurements in the
understanding of nonequilibrium and radistively cooled flows and the
questions raised by the Lockheed and University of Maryland experiments
which have motivated the experimental effort diecussed herein.

The technical effort on this project, as originally proposed, in
essence involved the use of various methods in the measurement of gas
temperature behind both incident and reflected shock waves in air and
other gases of interest in the study of plenetary entry. The aim of
these meagurements was to be as follows: (i) to provide a comparative
evalustion of different ges tempersture measurement methods; (ii) to
investigate the effect of radiative cooling behind reflected shock
waves; and (iii) to investigate nonequilibrium effects, particulerly,
coupled radietion and nonequilibrium effects behind both incident and
reflected shock waves. Origlnally there were to have been two phases
to this study; the first phase was to have primarily involved the
application of temperature measurement techniques already in usé in .
shock tube studies at Chio State. The second phase was to involve the
application of other temperature measurement techniques to be determined
on the besis of a literature review and assessment to be carried out



during the first phase. In addition to the general incresse in the
understanding of high temperature, radiating flows that would have
resulted from this research, part of the motivation for this effort
was that the experience gained with the techniques used would be of
direct benefit to the work going on in the Hot Ges Radiation Research
Facility at the NASA Langley Research Center and in the development of
a temperature measurement technique for this feecility.

Unfortunately, it was apparent early in the project that there
would not be a second phase to this effort. The focus of the program
was thus scmewhat changed to center on the development of a technique
that would lend itself to a day-to-day, on-line use with the NASA
Langley Hot Gag Radiation Research Facility. Because of the guestions
which have arisen regarding the validity of equilibrium gas temperature
calculations and the effects of nonequilibrium and radiative transfer
phencmens,, it was felt that the development of such a capability would
enhance their research effort.

The following section will review some of the types of methods
widely used to measure gas temperatures which were investigated in the
early portion of this study. Following this, for reasons to be dis-
cussed later, it was decided that the focus of this effort would be on
radiometric, as opposed to spectroscopic, measurement techniques. The
ensuing measurements were carried cut behind reflected shock waves in
air at an initial driven-tube pressure of 1 torr and for incident shock
veloclties ranging from 7 to 10 km/s. These shock tube conditions were
chosen beceuse it appeared that the resulting post-reflected shock wave
conditions would correspond approximately to the post-incident shock
wave conditions asscciated with on-going NASA Langley studies. Air was
used as & test gas because of the extensive information available on
i1ts thermodynamic and radiative properties; however, the Double Absclute
Intensity Measurement (DAIM) technique finally used is felt to have
application to a wide range of gases, In fact, one of its advantages
is that its use does not depend on knowledge of any gas properties.

As will be seen, the results obtained, though raising certain
questions, have been encouraging. In addition to the general applica-
tion of this technique to shock-tube produced flows, measurements have
also been carried out under conditions where the effects of radiative
cooling have been observed to occur. For these conditions, the results
obtained have shown reasonsble agreement with gas temperature predictions
which include radiative transfer effects.

I1. METHODS FOR THE MEASUREMENT OF GAS TEMPERATURE

The methods selected to be discussed in this section have been
chosen on the basis of their applicability to the temperature range of
approximately 10 to 20,000 K and a necessary response time of the order



of 1 ps. In all of these methods, the assumption of local thermodynsmic
equilibrium is made and, normally, & uniform slab (possibly with time
verying properties) of test gas is assumed. These temperature methods
are broken down into two broad classes of methods: (1) methods appli-
ceble to transparent or optically thin gases, and (2) methods applicable
to self-absorbing gases. Additional informetion on these snd octher
methods may be found in References 4t and 5.

Transparent gas methods assume that the optical depth is small
(i.e., 1) << 1) or, in other words, that self-absorption is negligible
in the wavelength region of interest. The simplest of the transparent
gas techniques is the relative line intensity ratio method, scmetimes
called the two-line technique. This method has been used here at
Ohio State to measure temperatures in shock-heated xenon.® The method
. is based on the fact that the integrated intensity of a line due to a
transition from some upper energy level Ey to some lower energy level
Ej, can be written as

h
IUL=NUAUL"§?1;%- - (1)

Here Iy, is the integrated intensity of the line, Ny is the number
density of perticles in the upper energy level, Ayr, is the Einatein
coefficient for spontaneous emission or the transition probability,

N\ is the wavelength assoclated with the transition from the upper to
the lower energy state, ¢ is the path length of the radisting slab,
and h and ¢ are the Boltzmann ccnstant and the speed of light, respec-

tively.

The ratio of the intensity of two such atcmic line transitions
(subscripted 1 and 2 below) may be written for an optically thin gas as

L _N& N (2)
I Nz Az M

Furthermore, for local thermodynamic equilibrium, the number density
ratio Nl/Ng cen be expressed as a function of the temperature T from
the Boltzmann distribution as

%‘12“ = ?2" exp{(Ez - Ey ) /xT] (3)

where g, and g- are the statistical weights or degeneracles of the
upper states, having energies E; and Ep, involved in the two measured
trangitions. Substituting and rearranging yields the gas temperature
as & function of the intensity ratio and the atomic properties
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In some cases, line ratio techniques can be extended to lines which
originate from different states of ionization by further assuming, as
an example, Saha equilibrium. Sana expressions can then be used to
relate the number densities of different species. This, however, mast
be applied with great care.

Using a similar approach to that uged in the line intensity ratio
techniques, some work has been done using the ratio of continuum
intensities at two wavelengths. Line to continuum intensity ratio
methods have also been used. These methods, however, are not in wide
use due to the lack of detailed imowledge of the collision cross-sections
and Gaunt factors necessary in continuum intensity predictions.

A method of considerable use in temperature measurements, however,
is the sbsolute line intensity technique. Absolute line intensity
measurements by themselves actually yield only the number density Ny
of the upper energy level of the transition. If in addition to the
intensity measurement an absolute pressure measurement is made, then
from eguilibrium considerations the temperature can be calculated.

A slightly different, but more involved, method requires not only an
absolute integrated intensity measurement for the line, but also a
megsurement of the line profile. From these two measurements the
temperature then can be inferred through an iteration technique. 1In '
Reference 3 measurements of this general type are reported for shock-
heated neon where small percentages of spectroscopic additives were
present. Both the 5852 A line of neon and the H, line were used.
Similar measurements are reported for air in References 1 and 2 using
several different nitrogen and oxygen line transitions. -

Anocther method for determining temperature based on an absolute
intensity measurcment uses the absolute intensity of a continuum region.
Although the theoretical prediction of continuum absolute intensities
is difficult because of the necessary knowledge of radiative cross-
sections, temperature measurements using selected continuum regions in
N and O have been compared with the results of other temperature methods
and seem to indicate that continuum intensity measurements of tempera-
ture ave feasible.ls?»>7 This method also has the added advantage of
high temperature sensitivity relative to other techniques. Again this
type of measurement requires an additional measurement and may involve
the assumption of equilibrium and/or an iteration technique in order
to reduce the intensity measurement into a temperature measurement.

Finally, the broadening of atomic lines may also be used to deter-
mine the temperature of a gas. This involves the measurement of the
relative intensity of the line profile and then a comparison of this



measured profile (or half-width) with tabulated or calculated profiles.
Line broadening techniques can only be applied to lines (gases) that are
fairly well understood and in which the broadening mechanlsms are known.
For example, the hydrogen H, and Hg lines are good choices, and the use
of these in measurements behind reflected shock waves in air are reported
in References 1 asnd 2. To apply broadening techniques in other gases,
normally the test gas i1s seeded with a small amount of hydrogen in order
to use its well-known properties. The measurement of hydrogen line
broadening (Stark broadening) gives a direct measurement 'of the electron
density and not the gas temperature. The temperature must be inferred
from the electron density messurement and an additional measurement.

It should be recognized that the use of & seeding material always raises
questions about the validity of the results obtained. This is particu-
larly true in nonequilibrium situations where the added material may

act as a contaminant and alter the normal relaxation processes.

In contrast to the above methods, which are based on the assump-
tion of a transparent gas, are the methods applicable to a gas of finite
optical thickness, i.e., a self-sbsorbing gas. The effect of absorption
on the intensity from an optically thick spectral regilon of a uniform
gas may be simply expressed as

Iy = By[1 - exp(-13)] (5)

where I, is the observed intensity from the gas at a wavelength A,
By, is the blackbody intensity at the wavelength A for a temperature T,
and 1, is the optical depth.

The blackbody or brightness temperature method is applicable if
the optical depth is much greater than order one (13 >> 1). Then, from
the above equation, the observed intensity I, approaches the blackbody
intensity, I, = B,, where Bj is glven as

C 1
B - R e T T (©)

B), for a given wavelength ), is only a function of temperature. Thus,
a measurement of the gas temperature T can be made by an asbsolute
intensity measurement of the emitted radiation I, at some wavelength A
and by equating this intensity to that of a blackbody. Although
certainly not the first to carry out such measurements, Bader® at

Ohio State applied this technique to shock-heated xenon using the

5262 A Xet transition. Measurements of this type have also been re-
ported In the literature for air;? however, in this case the gas was
seeded with hydrogen and the H, line was used. It should be noted that
an opticel thickness 7, greater than order one will frequently occur



only at the center of the more intense lines. Thous, in using this
method to measure tempersture, care must be taken to ensure that the
gas is optically thick at the wavelength selected. One mast also
ensure that the measured intensity is not adversely affected by radial
gradients, e.g., by absorption in the boundary layer region near a wall,

When the gas is not optically thick enough for the brightness
temperature method to be used, but too optically thick to neglect
absorption processes, then the two line intensity ratio technique may
be used with suitable corrections. fThis is, in fact, how this technique
was used in the temperature measurements reported in Reference 6. The
details of this correction procedure are reported in Reference 9. The
other optically thin temperature measurement methods may be similarly
corrected for absorption effects; however, in almost all cases, this
becomes extremely tedious.

Ancther method which relies on absorption for its use is the so-
called line reversel method. In the application of this technigue,
one endeavors to determine the intensity level of a known source at
which the gas radiation is jndistinguishable from the background source
radiation, i.e., it appears neither in emission or absorption. This
technique has been applied to a variety of gases with somewhat mixed
results. Normally a seed gas is used, e.g., either sodium or hydrogen;>
however, in the limit of the gas becoming optically thick, then the gas
- pradistion itself can be used with no seeding being necessary.

A modification of the line reversal method is the so-called
emission-absorption method. As in the previously discussed brightness
temperature method, the radiated intensity I is measured. In addition
to this measurement, a measurement of a lemp of known intensity Iy, as
viewed through the test ges, is mede. The known intensity of the lamp
I3y, will be attenuated as it passes through the test gas by the factor
exp (—T}). Thus, this second intensity measurement is the sum of the
gas radiation plus the attenuated lamp radiation, or :

Inp = In+ IKLexP('TK) . (7)

vhere Ipp is the total measured intensity. This expression can be
- combined with Eq. (5) to yield the blackbody intensity B, or, effectively,
the gas temperature as a function of the two measured intensities Iy
and Inp, and the known lamp intensity Iy. Thus, by measuring the two
intensity ratios In/Iy, and Inp/Inp, and knowning the sbsolute intensity
of the lamp I3, the gas temperature can be computed. This general
emission-absorption approech to temperature measurement can be applied
to either line or continuum radiation provided the optical thickness is
not too small and that the leamp intensity is approximately equal to the
gas intensity. The necessary optical thickness is normally only
achievable using hydrogen as a seed gas.®

6
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Still a further evolution of this method is what will be referred
to here as the Double Absolute Intensity Measurement (DAIM) technique.
Tn this method the absolute intensity of the gas is measured over two
different path lengths. These two measured intenaities, I3, and I,
are related to the gas properties through the relations

In B[l - exp(-'r';\l)]

(8)

I7\2 B}\[l - EXP('T'AE)]

where T\, = T), (#1/82) and 1,42 are the two path lengths. If I

and Ié? are measured and with ¢, and £> known, then the above equations
ficient to calculate the blackbody function, Bj, and thus, the

temperature, In addition, the optical thickness can be determined.

This is equally true of the emission-absorption method, and in fact,

the only difference between that method and DATM is that in the latter

an externsal source is not required.

It is of interest to note that the brightness, line reversal,
emission-absorption, and DAIM techniques all do not require any atomic
informetion about the gas being tested (e.g., transition probabilities,
broadening parameters, number densities, collision eross-sections, etc).
Thus, these methods eliminate errors due to incorrect values of param-
eters which are typically hard to measure. This and the resulting
simpliclty of the data reduction procedure are attractive from the
viewpoint of meking temperature messurements on & routine, day-by-day,
on-line basis using a veriety of test gases in which the use of seeding
is either undesirable or impractical.

It was for these reasons that this class of methods was chosen
for application in the present program, Initisl efforts were directed
towsrds the application of the brightness temperature method using the
6490 & multiplet of nitrogen, and preliminary brightness temperature
messurements were carried out. Questions raised by the possibility of
insufficient gas optical thickness for the use of this method resulted
in the declsion to develop DAIM, in which two absolute intensity measure-
ments at the same wavelength, but different path lengths, are used as
previously described to determine the gas temperature and optical thick«
ness. In this application the 6490 A nitrogen transition was again
used.

This method is most suiteble when the gas is neither too optically
thin nor too optically thick. In the latter case, of course, this
method reverts to the brightness temperature method since I, = I, = Bp3
and in the former case the accuracy becomes very poor. This will be
discussed further in the next seetion.



One of the advantages of DAIM is that it not only yields temperature,
but. alsc optical thickness, such that one can then assess whether or not
the gas is sufficlently optically thick for the use of the method itself.
If it is not, then one can turn to using one of the optiecally thin
methods, e.g., the two-line relative intensity method or the absclute
line intensity method.

There are of course other methods for the measurement of gas tem-
perature not discussed here. Various hydrodynamic methods have been
used which are based on determining the speed of sound of the gas,
e.g., through a measurement of the Mach angle. Such measurements,
though interesting, are impractical for use on a routine basis as
should be obvious. There are also methods based on X-rzy spectroscopy;
however, these methods are largely limited to temperatures corresponding
to energies sbove 100 eV. Finally, lasers also have been used as a
diagnostic tool to investigate gas properties, including temperature.
In the latter, the laser is used as a high intensity 1light source in a
scabtering-type experiment. The laser beam is passed through the gas,
and the spectrum of the scettered radiation is measured at different
scattering angles. One of the possible advantages of laser scattering
methods over present techniques. is the possibility of measuring not
only electron temperatures, but alsc measuring hesvy body temperatures
directly. However, such laser diagnostic techngiues are still in their
infancy and need to be further explored.

Thus, of all the techniques discussed here, it is the Double
Absolute Intensity Measurement method - DAIM - which appesrs to be the
most attractive within the constraints of the present program. As was
indicated earlier, an initial effort to carry out brightness temperature
measurements led to the development of DAIM. In the following sections,
theory underlying both brightness temperature and the DAIM technigues
will be considered further. In addition, the experimental arrangement
used in the measurements reported herein will be discussed.

III. BASIC CONCEPTS OF BRIGHTNESS AND DAIM TECHNIQUES

The brightness and Double Absolute Intensity Measurement (DATM)
techniques will be discussed in terms of the inherent assumptions, the
expected sensitivity, and the potential advantages and disadvantages
of each technique.

Both the brightness and DAIM techniques have a number of basic
asgumptions in common. The firet of these is that the gas of interest
is assumed to be in local thermal equilibrium in the sense that all
translational, rotational, vibrational, and electronic modes can be
ascribed the same temperature T. However, the gas 1s not necessarily
assumed in chemical (Saha) equilibrium. Second, the gas under observa-
tion is considered to possess uniform properties at any instant of time



but that these properties may vary with time. Finally, the gas is
sssumed to be absorbing and emitting (including induced emission), but
scattering is negligible for the test gas sizes of interest.

In addition, the unsteady term in the equetion of radiative trans-
fer is assumed negligible. The solution to the equation of radiative
transfer applicable under these assumptions for a slab of gas of thlck-
ness ¢ then takes the form :

I = Bpll - exp(-kpg)] | - (9)

vhere I) is the emergent radiative intensity at wavelength A (in W/
em®-sr-pm), kj is the linesr absorption coefficient (in em~1) at wave-
length A including induced emission, and B) is the Planck blackbody
intensity at wavelength A(in W/cm®-sr-um). The Planck blackbody
intensity can be expressed as

Cy /3

G/ - 1 (10)

B =

where. C; is the first radiation constant equel to 2hc® (11,910 W-
um? /ar-em®), Co is the second rediation constant equal to he/k
(14,390 um-K), A is the wavelength under observation {in um), and
. T ig the gas temperature (in Kelwvin).

When the optical thickness 7y = kpg is sufficiently large (1) =~ 5),
the exponential term in Eq. (9) will be very small compared to unity,
and the observable intensity I will be very nearly equal to the Planck
blackbody intensity Bj, i.e., Ij = B). Since the Planck blackbody
intensity &t wavelength A is only a function of temperature, the gas
temperature T can be written as an explicit function of the cbservable
intensity I, and the wavelength of observation ) in the form

Ca/A
T =T~ é?Q(I%}ETT (1)

This measurement approach is denoted as the brightness or blackbody
technique. The only additionasl assumption necessary over the basic
sssumptions mentioned earlier is that the gas possess sufficient
opacity at the wavelength of observation, i.e., 1 = 5. If this condi-
tion is not met, the measured intensity will be less than the blackbody
intensity, and the calculated temperature will be less than the actual
gas temperature.



The Planck blackbody temperature-intensity relationship of Eq. (10)
is shown graphically in Fig. 1 for various wavelengths., An idea of the
sensitivity (percent change in intensity corresponding to a percent
¢hange in temperature) of a brightness type of measurement can be
obtained by differentisting the Planck expression, Eq. (10), with
respect to temperature, which yields, after some rearrangement,

) _ g dr | (12)
A T

where

C Co/ AT
S - % Tty o (3)

The parameter S is representative of the experimental accuracy that can
be expected from a brightness temperature messurement. For example, if
the parasmeter S (sensitivity parameter) is 2, a 10 percent error in the
intensity measurement corresponds approximately to a 5 percent error in
the corresponding tempersture. This sensitivity parameter S is presented
as a function of temperature for various wavelengths in Fig. 2. It can
be seen from this figure that as the témperature increases, 5 decreases
(for a given wavelength) asymptotically approaching 1. (Conversely, as

- wavelength decreases, S increases (for a given tempersture). Thus it
is desirable, from the viewpoint of experimental accuracy, to operate
at short wavelengths. The choice of the wavelength region, however,

is normally dictated by the spectral features available in the particu-
lar gas under investigation. For the temperature range of 10,000 to
20,000 K, a sengitivity factor of 1.5 to L4 can be expected in the
visible wavelength regicon. In the vacuum-ultraviclet region of 1000

to 2000 A and for the same temperature range, the sensitivity is of

the order of 4 to 15. However, additional experimental difficulties
sre encountered making measurements in the vacuum-ultraviolet region
vhich may offset this advantage. In the near infrared region

(0.7 < A < 10 um) the sensitivity S will be near unity, making the
temperature measurement only as accurate as the absolute intensity
measurement. However, the large disparity between celibration inten-
sities and plasma intensities encountered in the visible and ultraviolet
wavelength regions is reduced in the infrared by an order of megnitude

or more. This possibly off-sets any disadvantage due to low sensitivity
for this reglon.

The normal justification for the application of a brightness
technique is based on a preliminery estimate of the opacity v of a
spectral feature of the radiation field (e.g., an atomic line, or intense
continuum region, or combination of a number of radiative processes) and

10
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its wavelength extent. If the required opacity is not available to
justify a brightness measurement but is still large, (e.g., 7~ 1 or
greater), then the Double Absolute Intensity Measurement (DAIM) tech-
nique may be applied.

The basic concept behind the DATM technique is to obtaln messure-
ments of the absolute intensity of the radiation at a wavelength A
emerging from a uniform slab of gas for two physically different path
lengths ¢, and g». The equations describing the emerging radiative
intensity for these two paths are

3

I, = BA(L - exp(-kpta)] (1)

1l

Iy, = B[l - exp(-kptz)] (15)

where the subscripts 1 and 2 denote the two different paths.

By measuring the absolute intensities I, and I)ﬁ, the wavelength
of the radiation A, and the path lengths 2, and £, the gas temperature
T can be calculated from the above two equations and the Planck ex-
pression, Eq. (10). In addition to the gas temperature T, the
absorption coefficient ki of the gas can also be determined. The above
two equations cannot be solved explicitly for T or kﬂ, thus making the
temperature-intensity and opacity-intensity relationships less clear.
However, by dividing Eq. (15) by Eq. (14) the optical thickness of
path 1 (7, ) can be written as an implicit function of only the Bg/ﬂl
and Ij,/I), retios in the form

oo 1- emp(u) (16)

where 17 = kiﬂl. This opacity-intensity ratio reletionship is shown
in Fig. 3 for various £p/¢, ratios.

To illustrate the DAIM concept further, a plot of I, versus I,
with constent temperature and constant v, lines is shownxin Fig. 4 for
a wavelength of A = 6490 R and a path length ratio £2/¢; = 1/4 (these
are the values used in the present experimental measurements)}. Note
that when the optical thickness 1, is infinite, Iy, = Ip, = B) and the
DAIM technigue reverts into two brightness tempera%ure measurements.
As the opaeity of the gas decreases (for a given temperature to 1, = 5,
the cbservable intensity Ip, is not eppreciably different from the
Planck blackbody function By (approximately 0.3% less). However, as

173, decresses from infinity to 1, = 5, 1z decreases from infinity
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to 1.25 and thus I), is appreciably less than B) (approximately 30%
less). Furthermore, as the opticel thickness spproaches zero, the gas
becomes transparent, and the observable intensity ratio I)Q/D\l
approaches the path length ratio £2/8: , becoming independent of the
gas temperature T. Thus, at small optical thickmness, the DAIM measure-
ment technique will become experimentelly inaccurate.

In order to obtain a more quantitative idea of the range of optical
thickness t© that will yield reasonable experimental accuracy (sensitivity)
in & temperature memsurement, & sensitivity parameter Sy, = aIp/Ip/at /T
can be obtained for either intensity I), or T, by differentiating
Eq. (14) with respect to temperature holding T3, constant » or differen-
tiating Eq. (15) with respect to temperature hé?Lding I, constant.

This yields, after scme rearrangement

‘ £
dly /I?\ _ - ¢ [BXP (Tl ‘f‘) - 1]
fi%?T—L = Sty = 8] - 55 CHCVES) (7)
IN> = const.
dTy, /T - 2 fexp(ty) - 1]
I), = const. [exp(-fl gl) - ]

where S is the same sensitivity parsmeter as that for the brightness
techmigque given in Eq. (13) and displayed in Fig. 2

_C exp(C./At)
5<% [exp%gz/imj -1} (19

The sensitivity parameters 817\1 and Sy, normalized by the brightness

sensitivity § are shown in Figs. 5 and 6 as a function of optical
thickness 1, for variocus path length ratios £5/2;.

It can be seen from thege two figures that the sensitivities -
SI7\1 and 817\2 cen be improved by using a small Eg/zl ratio. However,
the smsllest ratic experimentally practical will be determined primarily
by the physical size of the facility available and the wall thermal
boundary layers (which at present are being neglected). Thus, the

L2/8, ratio should be optimized for a given facility and physical
problem under investigation.

The sensitivity parsmeter 317\1 will always be less than the

sensgitivity parameter S of the brightness technique at the same wave-
length A. The sensitivity parameter 817\2 is much larger than S for
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large 1,, but eventuelly drops to less than S for small 7y values. The
experimental accuracy of the DAIM technigue will be primarily determined
by SI?\ , especially at large 1;, and is inherently less sensitive (accu-

rate) than that of the brightness technique (for the same wavelength A).
" The overall accuracy that can be obtained from a DAIM temperature
measurement is determined by the accuracy of the absolute intensity
meagurements that must be mede, the wavelength of observation, and the
opacity of the gas under observation. With considerable experimental
care, absolute intensity measurements in the 3 to 5 percent range should
be within the limits of the present state of the art. For example,
measurements at a wavelength of 6000 A would yield temperature measure-
ments with accuracies of 1.5 to 2.5 percent for large 7y values (1 =
or greater). This accuracy would e degraded by a factor of two (to

3-5 percent) for an optical thickness 1, of the order of 1.5 to 2 '
(depending on the Eg/ 2, ratio selected). Experimentally, there will

be a lower limit on 1, which will yield acceptable experimental accuracy
depending on (1) the accuracy requirements, (2) the wavelength under
observation, and (3) the accuracy with which the absolute intensity
messurements can be made.

Before discussing the actusl applications of the brightness and
DAIM techniques, it is worth mentioning that the above discusslon was
for a glven wavelength A. In practice, a wavelength region A\ will be

under observation. -If the absorption coefficient ky\ is relatively
constant over Ak and the wavelength extent AA is not too large, then
the above discussion is applicable to the center of this wavelength
region. Even if there is considerable I:?\ variation over A\, 80 long as
the lowest k7\ ie such that k-,\,e is of the order of 5 or greater, the
brightness technique will still yield correct results, However, the
DAIM technique will be much more sensitive to large k}\ variations over
the bandpass AA. Therefore, its application to such a wavelength regiom
requires additional informstion as to the spectral veristion of K.
However, this type of problem can be avoided by reducing the bandpass
AN sufficiently to satlsfy the assumption of k; = constant over the
region AM.

The brightness and DATM "radiometric” techniques have a definite
advantage over "spectroscopic" tempersture measurement techniques in
that they do not require any detailed knowledge about the gas properties,
such as transition probabilities., line broadening pearameters, and/or
collision cross sections. Thus, they are well suited for exploration of
gases of unknown propertles by eliminating the problems associated with
background contimuma or cother spectral features in the wavelength region
of observetion. They can eliminate potentially the need for using seed
gases (spectroscopic additives), which inherently change the problem
under investigation.

The radiometric techniques have the disadvantage of not being as

sensitive as soame spectroscopic techniques and they require accurate
absolute intensity measurement(s). They are also susceptible to boundary
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layer problems. The brightuess technique has the Inherent assumption
on the magnitude of 1 which is eliminated in the DAIM technique. The
DAIM technique, however, 1s still limited to large values of rt.

IV. EXPERIMENTAL APPARATUS

The majority of the experimental effort was directed towards the
development and evaluation of the DAIM concept as & usable experimental
temperature measurement technigue. The physical test problem selected
for study wes time-resolved temperature messurements behind reflected
shock waves in air. The wavelength region selected for the DAIM and
the brightness measurements was the center-most portion of the strong
nitrogen multiplet at A = 6490 A. Because of the relatively large
helf-width of the multiplet (=~ 50 R), the spectral band-pass half-width
of 5 & was considered acceptable to satisfy the DAIM assumption of a
nearly constant sbsorption coefficient over the wavelength region under
observation. Preliminary brightness measurements using a system similar
to one chamnel of the DAIM system to be described here indicated that
the assumption of 7 > 5 was not satisfied at the lower shock veloclties
of this problem, but that the optical thickness © was increasing with
increasing shock velocity.

It was anticipated that radiative cooling effects would be observable
at the higher incident shock velocities. This effect, coupled with the
relatively slow reflected shock velocities (1 to 2 km/s), dictated thet
the observation region be relatively narrow. In addition to these flow
imposed constraints, physical constraints were imposed by the diameter
of the window ports aveilable (13 mm) and the finite size of the tungsten
lamp filament that was necessary in calibration of the optics (approxi-
mately 15 mm high by 3 mm wide)..

A photograph of the experimental arrangement for the DAIM measure-
ments 1s presented in Fig. 7, and a schematic of the final optical
system used in the present measurements is showm in Fig. 8. This
system congists of two parallel absclute intensity channels approximately
6.5 mm apart (centerline to centerline). These two channels were Fformed
by two Baird-Atomic spectrograph entrance slits 0.2 mm wide located
40 cm apart, the plane formed by their axis being normal to the shock-
tube axis and in line with two 13 mm diameter sidewall observation ports
on opposite sides of the shock tube. The two independent collimsted
channels were formed by replacing the fishtail slides of the spectrograph
slits with slides having two 2.5 mm apertures spaced 6.5 mm apart. In
order to eliminate crosstalk between channels, an additional slide with
two 3.0 mm apertures (again 6.5 mm centerline to centerline) was located
midway between the two Balrd spectrograph slits. With this arrangement,
it was impossible for radiation passing through the upper aperture of
the first 8lit to pass through the lower aperture of the second slit
(and vice-versa). The radiation passing through the lower set of
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apertures wes deflected at right angles using a front surface, aluminum
deposited mirror.

The radiation passing through these collimated optical channels
was then passed through £/3.5 Ebert mounted, Jarrell-Ash 1/4 meter
greting monochromators to achieve the desired spectral resolution.
These monochromators were equipped with fixed, straight, bayonet entrance
and exit slite of 150 pm. These instruments have two interchangeable
gratings, 2360 grooves/mm blazed at_ 3000 & (16.5 A/mm linear dispersion)
and 1180 grooves/mn blazed at 5000 & (33 A/mn linear dispersion), the
latter being used in the present measurements, yielding a bandpass
halfwwidth of 5 A. In order to maintain good resolving power with
the monochromators and resscnable collection efficiency, the collimating
system end its respective monochromator were opticelly coupled together
using e short focal length lens mounted directly on the monochromator
entrance slit housing (1 1/4" focael length suprasil quartz lenses were
used). This lens focused an extremely small image of the first slit
aperture on the plane of the monochromator entrance slit (image height
of the order of 0.1 mm). The monochrometors were roteted 90°, making
the entrance slits horizontasl. This arrangement allowed the small image
produced by each short focal length lens to be completely captured by .
the 0.15 mm entrance slit width. After passing through the entrance
slit each beam diverged rapidly (due to the short focal length lens
used), thus enabling good f£illing of the grating end, therefore, main-
taining the instrument’s resolving power. With this optical arrangement,
very little of the slit height is actually used, and the unused portions
of the entrence and exit slits were masked off to minimize stray light
problems.

The radiation emerging from each exit slit was passed through a
second-order blocking filter (a Kodak 2-B Wratten filter was used) and
then converted into an electrical signal using an EMI 9558QC photo-
multiplier tube on each monochromator. These photomultiplier tubes
were powered in parallel with a Kelthley Model 244 High Voltage Power -
Supply, the voltage used varying run to run from 815 to 890 volts.
(This voltege variation was used to eliminste scale changes in oscillo-
seope settings and, thus, recalibrations). Since the resultant peak
currents expected in the photomultiplier tubes during a shock-tube run
were in the 100 uA range, care was taken in the design of the dynode
chein to keep the interstage voltage stable. This was accomplished by
using a 150 V zener diode across the cathode to first dynode stage
(as recommended by the manufacturer), 50 kg bleed resistors across all
dynode stages, and 0.1 uF capacitors across the last four dynode stages.

The photomultiplier output currents during calibration were
measured using two Keithley Model 41l Micro-Microamrmeters. During a
shock-tube run, each photomultiplier ocutput current was fed through
1.2 m of low capacitance coaxisl cable (RF62B/U) to a 500 0 load
resistor (voltage drops across these resistors were 60 mV or less on

each chennel). The voltage developed across each load resistor was
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displayed on a Tektronix 555 dual beam oscilloscope equipped with

Type 1A7A plug-in units. The frequency response of the electronics

was limited by the plug-in unit frequency discriminators to 1 Miz.

The sensitivity of each radistion channel (which ineludes collimating
slits, lens, monochremator, filter, and photomultiplier) was obtained
by placing a tungsten ribbon lamp (General Electric Type T24-17 cali-
brated by Eppley Laboratories) on the opposite side of the shock tube
from the collimsting system. This arrangement caused the tungsten
filament to completely £ill the field of view of one channel of the
collimating slit system. However, due to the large distance between
the two collimated channels and the finite size of the ribbon filament,
the lamp was installed on a vertical translator in order to alternately
position the tungsten filament on the centerlines of the collimated
channels while the lamp was in operation. In addition, horizontal
translation in two directions and a rotation about the vertical axis
were also incorporated in the system for proper positioning of the
lamp. A calibration of each channel, using the standard ribbon lamp,
was performed on each shock-tube run just prior to the actual test.

To minimize time between calibration and the shock-tube test (evacuation
and sample filling time), the calibration was performed through an addi-
tionel window on the lamp side of the shock-tube while the shock-tube
was at vacuum. The finite transmissivity of this window was taken into
account in the data reduction. The windows used were 3 mm thick pyrex
discs which were replaced after every shock-tube run.

The different physical path length needed for the second (upper)
channel was obtained using a smell flow divider extending from the
endwell. This flow divider, or splitter, consisted of a half wedge
9 mm high, 8 mm wide, and with a half wedge angle (taper angle} of 7.5°.
The surface of the splitter normal to the endwall was located 2.5 eam
from the viewing window. With the splitter rotated into position, the
field of view of the upper channel was terminated by the splitter sur-
face while the lower chamnel extended the full width of the shock tube,
unobstructed by the splitter. This arrangement gave the path length
ratio selected for the present measurements, 4 to 1 (10 cm to 2.5 cm).
In order to reduce reflections, the splitter was coated with flat black
absorbing paint. In addition, carbon depositing on the splitter by the
facility was allowed to build up over a number of runs. Based on
initisl estimates of the thermal boundary layer on the endwall (of the
order of 1 mm), the region of observation was located 3.6 mm from the
endwall. Side wall boundary layer effects for the expected test times
of 10 us were neglected.

From the spectral radiance (intensity)} of the ribbon lamp at the
desired wavelength and the measurements of the current ratios between
the lamp and the shock-heated gas over the path lengths ¢; and 25,
the sbsolute intensity from the gas at the desired wavelength for the
two path lengths was determined (again, linearity of the optical system,
detector, and electronics is assumed). From measurements of I, and I3,
(end measurements of A, £y, and £5) the DAIM temperature, Ty, was
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obtained numerically from Egs. (11), (14), and (15). The brightness
temperature measurement is simply a blackbody intensity interpretation
of channel 1 (lower physical channel) intensity. The brightness tem-
perature Tg, can be calculated directly by using Eq. (11).

A selected oscillogram output from the 555 dual beam oscilloscope
is shown in Fig. 9. The upper trace is for chamnel 1 (the 10-cm path
length) and the lower trace is for channel 2 (the 2.5-cm path length).
Also shown are zero lines, and directly below each trace is a time mark
signal consisting of marks every ps (the zero lines and time marks were
overlaid immediately before or after each shot). The time marks are
from the same source and are used to ensure time syncronization of the
two traces. Note the undesirable trace oscillations which are shot
noise. This is inherent in the present system due to the relatively
small solid angle and the surface area of gas being used; these are
imposed by the problem under investigation and the equipment presently
available, Instead of electronic filtering, the traces were photographed,
enlarged to 8 x 10, and hand-smoothed before amplitudes were read.

These amplitudes, along w1th the appropriate calibrations, were reduced
to Tmy TBrs I) s I)os and kk time profiles using a simple numerical
iteration computer program.

= ; i ﬁ_i,, W_I___- _i
| | £ |
| |

Channel No. |

Channel No.?2

Time Mark 7

Fig. 9. Intensity Time-Histories for Channels 1 and 2 of
DATM System, Run No. 1752
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The brightness and DAIM temperature measurements were performed
in one of'the two high performance shock-tubes existing at the 0.5.U.
Aeronautical and Astronautical Research Laboratory. This facility and
its performance has been documented in the literature.l©21l pBriefly,
~ the driver and driven sections are cylindrical with 10 cm inside
diameters. The driver gas, helium at about 125 psig, is heated through
an arc discharge process with the energy being supplied by a 11,000 uF
capacitor bank. The energy stored in this bank is variable up to
200,000 J at 6000 V. The discharge occurs between the electrodes of
a coaxial sssembly which is recessed in the bottom of the driver section.
The arc is initiated by an exploding wire between the electrodes, with
the main bank discharge duration being approximately 80 us for 90%
energy dissipation. The energy transferred by the arc heating process
increases the pressure and temperature of the driver gas. Three differ-
ent volume drivers are available, the smallest volume having the highest
energy density after discharge at a given voltage, thus, giving the
strongest shock velocities. The small (mini-volume) and medium (midi-
volume) size drivers were used in the present experiments.

The driver and the driven sections are separated by a prescored
steel diaphragm which bursts due to the high pressure arc-heated driver
gas and separates into six petals lying relatively flat against the
shock-tube wall in a time span of approximately 200 ps.

The driven section, approximately 8.25 m long, is made of stainless
steel. This section is connected through a 10 em inside dismeter valve
to either a mechanical roughing pump or to an oil diffusion pump and
mechanical roughing pump in series. The valve, when ¢losed, preserves
the contour of the shock-tube.

For the present tests, the driver section was evacuated to a few
torr before being loaded with 125 psig helium. The driven section was
pumped below 1 x 10~* torr before each run and the leak rate at this
pressure was considered acceptable if below 2 x 10-¢ torr/min. These
residual air pressures were measured with a number of instruments
(McLeod Gage, CVC Phillips Cold Cathode Tonization Gage, and CVC VGl1A
Hot Cathode Ionization Gage) and their velues agreed reasonably well.

The test gas used was synthetic air consisting of 79% nitrogen
and 21% oxygen purchased through Air Reduction Company (Aireo). In
order to ensure a relatively pure sample of test gas, the shock-tube
was purged once with synthetic air and then re-evacusted to below
1 x 10~* torr before loading with the final test sample. For conven-
ience in setting the initial pressure in the driven section, an
auxiliery chamber of small volume (relative to the shock-tube) was
loaded with the test gas sample at an intermediate pressure of 33.0
torr. When opened to the evacuated shock~tube, the resultant pressure
of the combined system was the desired pressure of 1,00 torr, This
intermediate pressure (awdiliary chamber pressure) was messured with
a mechanical gage (Wallace and Tiernan O to 50 torr gage) and the
Tilling system was calibrated using synthetie air and a cold-trapped
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MeLeod Gege for the final pressure messurement at 1.00 torr. The
accuracy of the initial pressure setting (P, ) is thus determined by
the accuracy of this initial calibretion which is of the order of 1 to
2 percent.

The last 3.5 m of the driven sectlon have cbservation ports every
0.5 m, each port consisting of a slit cut in the side of the tube with
dimensions of 1.5 mm wide (along the shock-tube axis) by 14 mm high,
Each slit is covered with a 1 mm thick synthetic sapphire window which
is backed with an O-ring sesl. The last three of these observation
ports were used in making the shock velocity measurements, their dis-
tances from the endwall being 1.16, 0.66, and 0.16 m, respectively.

The hydrodynamic shock front and luminous (radiation) front can
be considered coincident for the conditions of interest here. Thus,
by measurement of the time between the arrival of the luminous front
at two positions a known distance apart, an average velocity over the
measured distance cean be calculated. The distance between the two
velocity ports was 0.5 m. Thus, with shock velocities from 7 to
10 km/s, the time to be measured is of the order of 50 us or greater.
In order to achieve a velocity messurement with an accuracy of * 1%,
the measurement system was designed to determine the shock transit
time to within 0.5 us. '

The luminous front was monitored at each velocity point through
a collimating system consisting of a pair of 0.4 mm wide slitas 10 cm
apart, the first slit being only a few centimeters from the shock-
tube port. Thus, the field of view at the far side of the tube was
approximately 1.5 mm wide. With shock velocities of 7 to 10 km/s the
convection time (rise time) of this slit system is 0.25 pys or less.

The radistion passing through each velocity port collimating system
was monitored with aen RCA 931-A photomultiplier tube operated at 500 V
with & linear voltage divider chain carrying 20 mA. To ob%ain the
wltimate response time of the slit system and s4till maintein good
signal levels, the photomultiplier tube outputs were fed through emitter
follower cirecuits based on a deslgn suggested by Menard.l? These
emitter followers possess. an RC time constant of the order of 0.0k us
and ensble the recording equipment to be located at a distance from
the signal origin without degrading the response time of the present
system. The output of the emitter follower circuits from the last two
velocity ports were displayed on the upper and lower beams of a
Tektronix 555 dual beam oscilloscope fitted with Type G plug~-in units
with both beams being driven with the lower time base. The external
trigger of the upper time base of this oacilloscope was used to monitor
the trigger photamiltiplier tube (not possessing an emitter follower)
and to pees a delayed triggering pulse to the lower time bese. This
delaying technique allows recording of the arrival of both lumincus
fronts, thus enabling a more accurate determination of the time between
luminous fronts than a self-triggering system coffers. In order to
minimize sweep rate error, a time mark generator trace with 1~ and
S-us time marks was overlaid immediately before (or after) each run
and was located at the bottom of each oscillogram channel, to improve
reading accuracy.
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V. RESULTS AND DISCUSSION

As indicated previously, the brightness and DAIM techniques have
been applied to the time-resolved measurement of temperature behind
reflected shock waves in air., The Ohio State arc-driven shock tube
facilityl®s1! was used for these measurements; the shock tube conditions
covered included an initial driven tube pressure of 1 torr* and incldent
shock veloeities ranging from 7 to 10 km/s. '

Over twenty data points were obtained using the DAIM technique
and with the shock tube being driven by the mini-driver (this is our
smallest volume driver with a volume of 0,070 ££2). Some of the re-
sults from these measurements are tabulated in Table 1. These measure-
ments were obtained at a distance of 3.6 mm from the end-wall. Included
in Table 1 for each run are the measured incident shock velocity, the
predicted gas dynamic temperature (Tgd), the measured temperature at
t = 1 pus after the reflected shock wave had passed the measurement
position and based on the DATM data reduction technique (Tp), the
measured temperature at t = 1 ps based on interpreting channel 1 of
the DAIM system as & brightness temperature (TBr), the same two tempera-
tures averaged over the first 5 ps after shock passage, and the optical
thickness, 71 = kg1, at t = 1 us after shock passage. Although the test
time at these shock tube conditions msy be as much as 15-20 ps measured
from the instant of shock reflection off the end wall,'® it is felt that
a conservative estimate is 10 ps. Sinece it takes the reflected shock
wave nearly 4 ps to travel from the end-wall to the measurement position,
then there should be at least 5 ps of data-teking time avallable before
the test terminates, i.e., the reflected shock wave meéts the leading
edge of the contact region.

As may be seen from the data in Table 1, the measured DAIM tempera-
tures are consistently higher than the predicted gas dynamic temperatures
of Reference 1k. This is illustrated in Fig. 10 where the measured
DAIM temperatures at a time of t = 1 pus after reflected shock wave

passege are compared with the gas dynamic temperature predietions of
References 14 and 15, '

The brightness temperature messurements, i.e., the interpretation
of the channel 1 DAIM measurement as a brightness temperature, are shown
in Fig. 11 and compared with the data of Fig. 10. These are all for a
time of © = 1 n after shock passage. As can be seen, at the lower shock
velocities where the absorption is somewhet less, there is a larger

deviation of the measured brightness and DAIM temperatures than at the
higher velocities.

*Due to an error in pressure measurement some data were actually obtained
at an initial driven tube pressure of 1.2 torr. These dats show no
consistent difference from the data obtained at 1 torr and, furthermore,
the predicted gas dynamic temperature differs by only 1%.
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Table 1 - Tabulétion of Temperature Measurements Obtained With DAIM
System Behind Reflected Shock Waves in Air, P, = 1 torr,
x = 3,6 mm, Mini-Volume Driver '

Run U T "t =1 us Averaged over Optical Thickness,
TNo, (km?s) ‘ (E% Tms K Tprs K t = 1-5 us T, 8t t = 1 us
Tms K Tgps K
1734 8.33 15,400 18,400 16,500 17,500 16,150 1.74
1735 8.47 15,650 18,250 16,650 17,750 16,100 1.91
1736 B.70 16,100 18,700 17,950 18,350 17,750 2.68
1737 8.77 16,250 18,750 17,000 18,450 16,850 1.87
1738 8.62 15,950 16,850 16,100 16,900 16,150 2.58
1739 8.40 15,550 17,050 16,000 16,800 15,850 2.21
1740 8.70 16,100 17,700 17,050 17,600 16,950 2.73
1741 9.09 16,800 19,450 18,900 18,850 1B, 450 3.12
1742 8.85 16,400 17,700 17,300 17,700 17,300 3.30
1743 9.26 17,100 19,250. 18,950 19,100 18,850 3.66
1744 9.43 17,350 19,550 19,050 19,250 18,750 3.11
1745 9.09 16,800 19,150 18,400 18,750 18,100 2.76
1746 9.43 17,350 18,250 18,000 18,150 17,900 3.74
1749 9.62 17,700 19,300 19,000 18,850 18,600 3.58
1750 9.43 17,350 19,300 18,750 18,800 18,350 3.01
1752 9.52 17,500 19,150 18,850 . 18,750 18,500 3.58
1753 8.20 15,150 16,750 15,050 16,350 14,850 1.71
- 1754 8,47 15,650 17,200 16,050 16,800 15,800 2,13
1755 7.63 13,800 16,450 11,800 15,850 11,600 _ 0.72
1756 7.63 13,800 15,450 11,750 15,000 11,600 0.85
1757 7.94 14,600 15,800 13,450 15,800 13,450 1.33
1758 8.13 15,000 15,950 14,650 16,000 14,550 1.90
1759 7.81 14,300 15,000 12,900 14,450 12,650 1.3
1760 8,00 14,700 15,950 13,100 15,350 13,000 1.15
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The fact that the test gas absorption coefficient does increase
with increasing shock velocity 1s shown in Fig. 12. Here the gas
absorption coefficient, at a time of t = 1 ps after shock passage and
hased on the ratio of the intensities from the two DAIM channels using
Fig. 6, is presented as u function of incident shock velocity, In
Fig. 13, representative absorption coefficient time-histories are
presented. Agalin, the ineresse in the magnitude of the absorption
coefficient with increasing shock velocity is apparent. As may also
be seen, however, there is no major variation in the absorption
coefficient with time for a time period of 15 us or more.

Since the path length for channel 1 was 10 cm, the associated
optical thickmess 1, was of the order of 3 at the higher velocities,
and the brightness and DAIM temperatures in Fig. 11 are seen to be in
good agreement at these conditions. At lower velocities, tv; was of
the order of 1. Although dats were tsken at incident shock velocities
as low a8 7.5 to 8.0 km/s, no temperature data has been presented
graphically for conditions where 7y is less than 1.5. This is because,
when 1 is small, the measured temperature becomes extremely sensitive
to the specific value of 1 deduced from the data and the acecursacy of
the measurement becomes severely degraded.

It should be noted that the brightness temperature, which is based
on the assumption that the gas radiates as a blackbody, represents a
lower limit on the gas temperature. If the gas is not a blackbody,
then the actual gas temperature (at least somewhere along the optical
path) must be higher than the measured brightness temperature. It is
apparent in Fig. 11 that at the higher incident shock velocities, the
measured brighiness temperatures lie above the predicted gas dynamic
temperature. Since these measured brightness temperatures do represent
a lower limit on the gas temperature, this is a further indication of
the deviation between the present data and the predicted gas dynamic
temperatures,

A further illustration of this point is contained in Fig. 14 where
thae maoenrad tamnoneture 1o graphed as a function of the predicted gas
dynamic temperature. This, again, is for a time of 1 us after shock
passage. Figure 1L shows the temperature data to be approximately 10
percent higher than the predicted values. An error analysis is shown
in Table 2 and shows the possibility of a 5 percent systematic bias
error and a 7 percent random error. This error analysis 1s in terms
of the intensity, and for S ranging from 1 at the lower shock velocities
to 2 at the higher velocities (see Figs. 2, 4, and 5), the temperature
measurement error would range from 5 percent bias and 7 percent random
at the lower shock velocities to 2.5 percent bias and 3.5 percent
random at the higher velocities. This obviously is not sufficient to
explain the deviation apparent in Fig. 1l, since the systematic bias
error and the random errcr would not be linearly additive,

Furthermore, the present results are not in agreement with that

of earlier investigators who also found their temperature measurements
to consistently deviate from the predicted gas dynamic values, but in
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Linear Absorption Coefficient, kx ~ cm™
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Table 2 - Error analysis for DAIM System Intensity Measurements

Estimated
Source of Error Percent Error
Bias Random
1. Ribbon Filament Lamp
NBS Lamp + 2
Eppley Lamp +1
Ratioing of Lamps +1
2. Calibration Using Keithley h1L +1 + 1
3. Window Transmissivity + ]
(80% of Window Samples in this range)
4. Oscilloscope Calibration + 1
5. Signal to Noise Ratio + 2
6. Linearity of Photommltiplier + 2
TOTAL ESTIMATED ERROR + 5 + 7

the opposite direction. Wood and Wilson,'>® using air seeded with
hydrogen and also making measurements behind reflected shock waves,
found their measured temperatures to be on the aversge 5-6 percent
lower than their predictions. This was for an initial driven tube
pressure of 0.2 torr and for post-reflected shock wave temperatures
ranging from 10,000 to 16,000 K. Bengston et al.® in a similar study,
but using neon with small amounts of spectroscopic additives, found
their measured temperatures to be on the average 3 percent lower than
the predictions.

It should be emphasized that to the authors' knowledge extreme
care was taken in all three of these experimental investigations to
account for the various factors which enter in. For example, in the
present work a d.c. calibration was made of both the oscilloscopes used
and the Keithley 414 micro-microammeter using an IBI Model 600 d.c.
potentiometer and a variable current source. The time marker was also
compared with a standard. Checks were made for light leaks and for
reflections off of slits or windows that would allow stray light to
re-enter the opticel train. In addition, the ribbon lamp filaments
were scanned to locate the presence of hot spots and to determine the
megnitude of the intensity gradient along the filament. The possibility
of photomultiplier fatigue was tested at the celibration intensity used
in the experiments (there was no evidence of such fatigue). Finally,
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¢hecks were made on the photographic enlargement and development tech-
nigues. As a result, it is felt that the differences between the data
and predicted gas dynamic temperatures shown in Fig. 1h are not due to
experimental technique.

This anomely between the measured temperatures and the predicted
velues is further compounded when one looks at the measured temperature
time-histories which are shown for selected cases in Figs. 15 (a)-(c).

In these figures, the runs have been grouped according to incident

shock veloeity. Although there is reasonable agreement between repeated
runs at the ssme approximate shock velocity, there is, in general, a
fall off in measured temperature with time measured from the instant of
shock passage. This was expected at the higher shock velocities, e.g.,
Fig. 15(c), where radiative cooling was expected to make its presence
felt. The data at these higher velocities does, in fact, agree reasonably
well with the predicted decrease in temperature from the radiative-gas
dynamic coupled reflected shock wave flow field calculations by Nerem

et al.6517 yhich used a five-step absorption coefficient model.'®
However, a somewhat similer trend also exists at lower shock velocities.
This ie not so easily explained since at incident shock velocities .
below 8.25 km/s radiative cocling effects are predicted to be negligible.
Tt must be noted, though, that assuming the measured temperatures are
correct, then the fact that they are elevated by, on the average, 10
percent would result in a more pronounced radiative cooling effect.

On the other hand, at these lower velocities t; is less than 1.5 and

the associated accuracy of the DAIM measurement mekes it impossible to
conclude anything about any temperature varistion with time behind the
reflected shock front.

There are other factors which must be considered in the interpreta-
tion of the data. There is the possibility of a chemical noneguilibrium
effect which might evidence itself both in the incident shock-heated
gas as well as behind the reflected shock wave. With regard to the
latter, the measurements and calculations of Nerem et al.'® indicate
that relaxation to chemical equilibrium (to within 1% in terms of
temperature) would occur within 1-2 ys after reflected shock passage
at a shock velocity of 7 km/s and within much less time at the higher
velocities of this study. Thus, although slightly enhanced temperatures
might be expected in the post-shock nonequilibrium region, its limited
extent suggests that any effect would be negligible and would not
influence the interpretation of the observations reported here.

With regard to any post-incident shock nonequilibrium effect on
the present measurements, the radiative relexation distance (intensity
approaches to within 10% of the equilibrium intensity) behind an incident
shock traveling 7.5 km/s in alr at 1 torr would be less than 1 centi-
meter.l? Although relaxation to within 1 percent on temperature would
require a distance an order of magnitude longer, any effect due to the
slight nonequilibrium in this region would be expected to be removed
by the rapid post-reflected shock relaxation. Thus, here also, it is
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concluded that any nonequilibrium effect on the interpretation of the
present data is not importent.

Another factor which should be noted is the reflected shock velocity
time-histories measured by R. . Prior and reported in Reference 20.
These show that as the reflected shock wave leaves the end-wall 1t will
first decelerate (the measured initial attenuation rate agrees quite
well with the predicted radiative cooling effect by Nerem et al.x8517)
and then asccelerate. The time after shock reflection at which this
acceleration begins increases with increasing incident shock velocity
presumably, because the radiation is stronger at the higher velocities
and thus, the radistion induced attenuation dominetes for a longer
period of time, For incident shock velocities below 9 km/s, radiation
effects are small and the acceleration begins almost immediately.
Although this behavior has been cbserved by others®!:»®? and is believed
to be associated with the interaction of the reflected shock wave with
the side wall boundary layer, it has not been satisfactorily explained
from & theoretical viewpoint. Prior's measurements do, however, indicate
en acceleration rate of 105 km/s®. Since the reflected shock speed is
of the order of 1 km/s, an appreciable change in reflected shock veloecity
could result in a few microseconds. This would be acccmpanied by an
increase in the post-shock temperature, and would possibly influence
the temperature time-histories observed in the present experiments.

Equally critical in the interpretation of the present data is the
possible effect of axial gradients in the incident shock heated geas.
These gradients could be the result of shock attenuation or, equally
well, the effect of the side wall boundary layer. Mirels®? has analyzed
such boundary layer growth effects and has carried out caleulations of
the resulting influence on the flow properties. In essence, because
of the side wall boundary layer growth, the flow behind the incident
shock wave decelerates (relative to the shock wave) and the pressure,
density, snd temperature increase. Although the t emperature behind
the inecident shock wave is predicted to increase by only a few percent
as one proceeds towerds the contact surface, this effect becomes
magnified when this post-incident shock flow 1s further shock~heated,
e.g., by a standing or reflected shock wave. Thus, in the worse case,
the post-reflected shock wave temperature may be increased by as much
as 10 or even 20 percent.

Such boundery layer effects are most pronounced when the length of
the test gas slug approaches its maximm value, as may be seen fram the
results of Reference 23. Since, for the present experiments, the test
gas slug was of the order of 80-90 percent of its maximum length, the
presence of side wall boundary layer effects cannot be ruled ocut. In
addition, if one assumes that a reflected shock wave moving into such
a gide-wall boundary layer influenced reglon will adjust its speed so
as to stagnate the gas it processes, then the reflected shock wave
velocity would be expected to increase as it moved away from the end-
wall. This would further accentuate the magnification of the temperature,
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and produce an increasing post-reflected shock temperature with distance
from the end-wall, which would be consistent with the observations of
Prior.2°

In order to explore whether or not such an effect 4id, in fact,
manifest itself, & limited number of additional measurements were
carried out at a distance of only 1.6 mm from the end wall., Theoretical
caleulations indicate that even this close to the end-wall the observed
region will be outside the end-wall boundary layer during the data
taking period.*®»'? These data are presented in Table 3 and in Fig. 16
where they are compared with the previous data of Fig. 10. As can be
seen, the data obtained at 1.6 mm from the end-wall lie on the lower
gide of the scatter of the data obtained at 3.6 mm from the end-wall
and are in mach better agreement with the predicted gas dynamic tempera-
tures. Although the data at the 1.6 mm position are limited in quantity,
they suggest that there may be a gradient in post-reflected shock wave
temperature which would be consistent with & sidewall boundary layer
effect.

It should be noted that, because of the much larger X/D (driven
tube 1ength/diameter) ratio associated with the present experiments as
compared with the earlier studies of Wood and Wilson':® and Bengston
et al.,® such a boundary layer effect would be expected to be more
severe in the present situation. This might at least partially account
for the higher temperatures observed here {on the average approximately
10 percent above theory) as compared to References 2 and 3 (6 and 3
percent low, respectively).

Furthermore, such a boundary layer effect might also explain why,
for comparable conditions (8-10 km/s, P; = 0.2 torr in Reference 2, and
7-10 km/s, P; = 1.0 torr in the Ohio State studies), radiative cooling
effects have not been observed behind reflected shock waves in the
Lockheed experiments while they have been in these studies. The
alightly higher temperatures measured at Ohioc State would result in the
earlier onset of radiative cooling effects and, thus, a more pronounced
effect for a given inecident shock velocity.

Another boundary layer effect which may be important is an apparent
shortening of the path length for each of the two DATM chennels due to
the presence of wall boundary leyers (both the shock tube side-wall
boundary layer and that on the splitter). This effect is cauesed by the
relative transparency of these cooler wall layers and can be approxi-
metely accounted for by shortening the path length by a distance equal
to the sum of the two wall boundary layer thicknesses. As an example
of the magnitude of this effect, the temperature resulting from the
meesured intensities for Run No. 1753 (see Table 1), assuming a boundary
layer 2 mm in thickness is present on both the sidewsll and the splitter,
ie 16,050 K. This is for a time of t = 1 ps after shock passage and
should be compared to a temperature of 16,750 K from Table 1. A 2 mm
boundary layer thickness is not unreasonable®* and, thus, the temperatures
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Table 3 - Tabulation of Temperature Measurements Obtained With DAIM
System Behind Reflected Shock Waves in Air, P; = 1 torr,

x = 1.6 mm, Mini-Volume Driver

Run Us ng t =1 us Averaged over Optical Thickness

No. (km/s ) (X) Tps X Tprs K t = 1-5 us T1, ab t = 1 us
Tms K Tpes K

1763 8.47 15,650 16,300 15,250 16,100 15,050 2.15

1764 9.35 17,200 18,700 18,500 18,450 18,200 3.95

1765 8.33 15,400 16,000 14,900 15,850 1h4,750 2.06

1766 9.17 16,950 18,400 18,050 18,500 18,150 3.50




Temperature, T ~ °K

20,000

18,000

16,000

14,000

12,000

Feference
Reference 15

10,000 - .
O X=16mm
6,000 — -
4,000 |- —
2,000 - ]
0 | ) | L | |
70 5 80 85 90 9.5 100
incident Shock Velocity, Ug ~ km /sec
Fig. 16.

Comparison of DAIM Temperasture Measurements Obtained at 1.6 mm
end 3.6 mm from End Wall, t = 1 us After Shock Pagsage,
P; = 1 torr, Mini-Volume Driver Used

L



reported here should possibly be somewhat lower due to this boundary
layer effect.

Run No. 1753 is for a relatively low incident shock veloeity. At
higher shock velocities where 1 is larger, Tm = Ty and boundary layer
gbsorption may be important. In this case, the effect of the boundary
layer should be such that the data reduction will yield too low a
temperature. In any event, it is clear at this point that boundary
layer effects may be important and should be investigated further.
Unfortunately, time limitations prevent us from doing this.

As a further and final check on the applicetion of the DAIM-
technique, a second series of measurements were carried out using our
medivm-size driver chamber. This is the so-called midi-driver which
has a volume of 0.081 £t> and which has been used in a majority of our
previous studies, e.g. Reference 13. This driver and the mini-driver
used in measurements reported in Table 1 are very similar, having the
game coaxial electrode errangements, snd volumes which are approximately
the same. However, the electrodes are closer to the diaphragm in the
mini-driver, and as has been noted and is apparent in Fig. 17, the
driver gas coming down the tube after the contact surface radiates much
more strongly when the mini-driver, rather than the midi-driver, is
used. This is assumed to be assoclated with an increased amount of
driver gas contamination in the contact reglon due to the proximity of
the electrodes and has been borne out by time-resolved spectroscopic
measurements .S

dome of the results obtained with the midi-driver are presented in
Table 4 and representative temperature time-histories are shown in
Fig. 18(a)-(p). These results, for a time of t = 1 ps after shock
passage, are compared in Fig. 19 with the previous data of Fig. 10.
As may be seen, the data obteined with the midi-driver lies rather
consistently on the low side of the general scatter of data from Fig. 10
for the mini-driver. This is further illustrated in Fig. 20 where the
measured temperstures are graphed as a function of the predicted gas
dynemic temperature. Here the data are seen to deviste on the average
only 5 percent from the predictions as compared to the 10 percent
deviation obtained with the mini-driver. This now places the deviation
approxi?ately within the accuracy of the experimental measurement (see
Table 2).

It is interesting, in some ways strange, that there should result
this difference between data obtained using two drivers so nearly alike.
The reason for this is certainly not understood, even though there are
the previocusly noted observational differences in driver gas radiation
(see Fig. 17). However, it does point out a possible problem, not only
in this fecility, but also in other facilities.

Tn terms of the application of the technique itself, in many shock-
tube studies a 10 percent accuracy temperature would be considered more
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Table 4 - Tabulation of Temperature Measurements Obtained With DAIM
System Behind Reflected Shock Waves in Air, P, = 1 torr,
x = 3.6 mm, Midi-Volume Driver

Run Us Tga t =1 us Aversged over Optical Thickness,
No. (km/s ) (K) Tms K TRrs K t = 1-5 us T1, 8t t = 1 us
: Tm, K Tars K :

1768 B,62 15,950 17,700 16,400 17,150 16,050 2.07
1769 8.62 15,950 16,150 15,250 16,400 15,300 2.30
1770 9,01 16,650 17,750 17,250 17,350 16,900 3.03
1771 7.75 14,150 19,150 13,650 16,550 13,050 0.77
1773 8.00 14,700 17,200 14,900 17,000 14,75¢C 1.45
1774 8.33 15,400 16,350 14,900 16,400 14,900 1.23
1775 8.33 15, 400 17,000 15,200 16,350 14,850 1.68
1776 8.70 16,100 17,850 16,600 17,250 16,350 2.09
1777 8.62 15,950 16,450 15,800 16,150 15,650 2.68
1778 8.93 16,500 17,350 16,900 17,100 16,700 2.09
1779 g.01 16,650 17,950 17,300 17,600 17,100 2.81
1780 9.09 16,800 18,250 17,800 18,050 17,650 3.16
1781 8.62 15,950 16,950 16,300 16,850 16,200 2.67
1782 8.70° 16,100 16,750 16,200 16,700 16,050 2.79
1784 8.85 16,400 17,600 16,950 17,350 16,750 2.68
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than acceptable and the deviation shown in Fige. 14 and 20 would not be
of concern. However, we felt that we could make a more accurate tem-
perature megsurement using DATM and we believe that, in fact , We have,
i.e., mach of the difference between the data and the predictions is
felt to be resl and not due to experimental error or technique.

This conclusion does not mean that the DAIM technique carnmot be
improved upon. From an experimental viewpoint, there are many things
that 'can be done; for example, by using a single beam oscilloscope, &
full 10 om of deflection would be available. Camera techniques could
be improved. A more accurate method for reading calibration current
could be employed. A calibration lamp directly from NBS could be
employed, and better control of lamp filament current would be of
benefit. Finally, and very importantly, an improved signal-to-nolse
ratio would lead to improved accuracy. This could be done, as an
example, by viewing a larger volume of gas or by using interference
filters instead of monochromators for wavelength resolutionm.

In closing, it should be noted that there are several possible
optical path arrangements to use in making the DAIM type measurement.
The simplest arrangement is to plece a splitter in the shock tube and
divide the tube wldth unequally. Then the radiation may be observed
fram the two different slab thicknesses as is illustrated in Fig. 21(a).
Ideally, of course, the splitter should be a perfect absorber with no
reflections occurring off its surface {since the splitter surface will
not attain a very high tempersture during the test time, any surface
emission should be negligible}. For a given shock-tube size, the
geometry of Fig. 21(a)} does not give the largest 1, values possible,
thus foreing the opacity to lower values and degrading the accuracy of
the measurement. However, by either placing a hole in the splitter,
viewing at right angles (see Fig. 21(b)), or off-setting one beam as
is 11lustrated in Fig. 21(c) and as was done here, the longest path ¢,
can be made to be the shock-tube diemeter. Again, this technique re-

- quires that the far viewing well reflections on each channel be zero.

An alternative to using a splitter is to meke the far wall highly
reflective on one charnel so that the optical depth of that path can be
doubled to 2d. This configuration, illustreted in Fig. 21(d), would
have the advantage of keeping the optical paths at least as good as
those for a straight brightness measurement. The main problem here
would be in making the far wall a perfect reflector. A mirrored
surface in contact with the flow 1s questionable because of both surface
quality and possible alignment problems, A mirror located behind a
window may be acceptable, and, in this case, the finite transmission
of the window for two passes through it and the finite reflectivity
of the mirror must be taken into account in data reduction and interpre-
tation. The apatial resclution will also be degraded due to the increased
path length, but this could possibly be overcome by using a focusing
mirror instead of a flat mirror. Obviocusly, there are other possible
optical path arrangements as well. Each of these would have to be
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Fig. 21. Possible Optical Path Arrangements for Application of
DAIM Technique (ST-shock tube, S-splitter, M-mirror)
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considered on its own merits and in terms of the faclility on which it
is to be applied.

VI. CONCLUSIONS

Tt is believed that the results of this investigation have shown
the Double Absolute Intensity Measurement, or DAIM, technique to be a
useful diagnostic tool in gas dymnamic studies.

The difference between the measured temperatures and the predicted
gas dynamlc values which were found in the present experiments is felt
to be in no way an indictment of the technique. Rather, the technique
has, if anything, proved useful in pointing out certain apparent facility
related problems. As can be seen in Flgs. 14 and 20, the data scabters
only by approximately * 5 percent arocund its own mean. This is con-
gsistent with the error analysis, and it is felt that this could be
improved . '

It should be noted that one of the adventages of DAIM is that it
provides a measurement of both temperature and optical thickness. On
the basis of the latter, one can then determine whether or not the data
-obtained are in an appropriate optical thickness range for the DAIM
measurement to be sufficiently accurate and to be representative of the
gas conditions.

In addition, there are a variety of path length arrangements which
can be used in carrying out DAIM measurements. Certain questions, '
however, are still unanswered and need to be investigated further.
These include those pertaining to the effects of boundary lasyers and
of spectral variations over the wavelength interval to be used.
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